Y Annadani
*
,
N Pawlowski
,
J Jennings
,
S Bauer
,
C Zhang
,
Wenbo Gong
*
* Equal contribution (authors marked).
NeurIPS 2023
•
2023
causality
approximate
bayesian inference
P Morales-Alvarez
,
Wenbo Gong
,
A Lamb
,
S Woodhead
,
S Peyton Jones
,
Et Al.
NeurIPS 2022
•
2022
approximate inference
bayesian inference
Wenbo Gong
PhD thesis, University of Cambridge
•
2022
Wenbo Gong
,
Y Li
,
JM Hernandez-Lobato
ICLR 2021
•
2021
statistical test
approximate inference
bayesian inference
Wenbo Gong
*
,
Y Li
*
* Equal contribution (authors marked).
ICML 2021 Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models
•
2021
Spotlight
generative model
approximate inference
bayesian inference
Wenbo Gong
,
K Zhang
,
Y Li
,
JM Hernandez-Lobato
ICML 2021
•
2021
approximate inference
Bayesian inference
Wenbo Gong
*
,
Y Li
*
,
JM Hernandez-Lobato
* Equal contribution (authors marked).
ICLR 2019
•
2019
approximate inference
Sampling
bayesian inference
Wenbo Gong
,
S Tschiatschek
,
S Nowozin
,
RE Turner
,
JM Hernandez-Lobato
,
Et Al.
NeurIPS 2019
•
2019
generative model
approximate inference
bayesian inference
active learning
C Ma
*
,
Wenbo Gong
*
,
S Tschiatschek
,
S Nowozin
,
JM Hernandez-Lobato
,
Et Al.
* Equal contribution (authors marked).
ICML 2019 Workshop on Real-world Sequential Decision Making
•
2019
approximate inference
Bayesian inference
C Ma
,
Wenbo Gong
,
JM Hernandez-Lobato
,
N Koenigstein
,
S Nowozin
,
Et Al.
NeurIPS 2018 Workshop on Bayesian Deep Learning
•
2018
Page 2 of 2